
MOTION OF A VISCOUS THERMALLY CONDUCTING 

GAS UNDER THE EFFECT OF A ROTATING DISK 

V. P. Shidlovskii UDC 532.516 

INTRODUCTION 

The problem of the steady laminar motion of an incompressible viscous fluid under the effect of an 

unbounded disk rotating with constant angular velocity was first formulated and solved approximately by 
Karman [I]. The solution of this problem, constructed for the Navier-Stokes equations, at the same time 
displays a number of features characteristic of flows in boundary layers~ It is not hard to establish, for 
example, that Karman's solution corresponds to a finite displacement thickness which does not depend on 
the radial coordinate, and one can introduce other thicknesses defined in boundary-layer theory. In this 
connection many of the methods of boundary-layer theory are applied in the solution of the Karman problem 
and its modifications [2-6]. 

Eventually, attempts were made to construct a solution analogous to Karman's solution for the more 
general ease of a compressible, viscous, and thermally conducting fluid [7, 8]. In [7], in particular, the 
flow of a gas under the effect of a rotat ing dis/{ with a constant sur face  tempera ture  was analyzed in the 
boundary- layer  approximation~ However, the construct ion of higher approximations to the solution of the 
total problem, determined by the method of joinable asymptotic  expansions [9], is affected by the presence  
of secular  t e rms  which are  proport ional  to eve r -h ighe r  powers of the radial  coordinate, which indicates 
divergence of the approximations.  Thus, it becomes c lear  that in the case of a constant surface t empera -  
ture the problem of an unbounded disk rotating in a gas does not have a solution in the boundary- l aye r  ap- 
proximat ion and requi res  the compIete Nav ie r -S tokes  equations for  its descr ipt ion for any values of the 
cha rac te r i s t i c  p a r a m e t e r s .  

In order  to have the possibi l i ty of applying the perturbat ion method to the solution of the problem of 
a disk in a compress ib le  fluid one must  modify the formulation of the problem, assuming that the surface 
t empera tu re  var ies  with the radius.  On the basis  of the assumption that the radial  tempera ture  var ia t ion 
obeys a power taw, a t ransformat ion  of the original  sys tem of Navier--Stokes equations to dimensionless  
form,  which is mos t  suitable for the t ransi t ion to boundary- layer  equations, is pe r fo rmed  below. It is 
shown that such a t ransi t ion is possible only for a quadratic law of radial  t empera tu re  variation, when 
there  exists a s e l f - s imi l a r  solution of the complete Nav ie r -S t ekes  equations.  By introducing into the 
analysis  the small  p a r a m e t e r  r which is analogous to Re -1/2 in problems of s t reamline  flow, and pass ing 
to the limit r ~ 0, we obtain the c o r r e c t  var iant  of the equations of the boundary layer  in a gas at a rotating 
disk. A study of these equations indicates the presence  of some special  features  of such a boundary layer  
which are  not encountered in ord inary  boundary l ayers .  For  example, it is ascer ta ined  that a solution of 
the boundary- layer  equations can exist  if outside the boundary layer  there is adiabatic motion of a cer ta in  
c lass  with radial ly varying p r e s s u r e  and tempera ture  and with a constant angular velocity of rotat ion of 
the entire mass  of gaso The proper t ies  of the attenuation of per turbat ions with g rea te r  distance f rom the 
surface are  also analyzed and the resul ts  of a numerical  caIculation of the flow pa ramete r s  in the bmmdary 
layer  a re  presented for a cer ta in  concre te  example.  

1. Suppose a disk of infinitely large radius,  rotat ing with a constant  angular velocity a), is located 
in the plane z = O~ The hal f -space  above the disk is filled with a viscous thermal ly  conducting gas which 
has constant specific heat capacit ies  Cp and Cv, a constant Prandt l  number a, an equation of state in the 
Clapeyron form, and a power- law dependence of the viscosi ty  on the t empera tu re .  Under the effect of the 
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rotat ion of the disk the gas is set  into motion and, taking this motion as established and axisymmetr ic ,  we 
use for its descr ipt ion the N a v i e r - S t o k e s  equations, which in the cyl indr ical  coordinate sys tem have the 
form 

0 (rp~'r) , 0 (rpvz) 0; p = (n - -  t) pe; $1 = Ae~; 
~Tr -F Oz, - -  (I . i )  

P t~v~-aTr + V~'~7 - -  - -  Or 4- "-5- ~'~ I l 3 o T -  

r ar ~- "~"z ~ \ Oz -P -gT-r/] '-I- 2F -P- k ~Tr r ' '  

[ a~ o a% ' " a 
P ~ V , -gTr -t- V z -ESz -F 

(v ae (aVr i v a~=~ • 1 a (rl~-~-r) + 

2 / ~Jr 
§ t ~ § a t ]  § \ ~Tr 

where u =  Cp /c  v, e = CvT is the internal energy,  A and n are  constant pa rame te r s ,  and the remaining nota- 
tion coincides with that in s tandard use.  

In o rder  to make it possible to consider  a cer ta in  c lass  of problems with different boundary condi- 
tions, we assume that at the charac te r i s t i c  surface which we have chosen the tempera ture ,  p re s su re ,  and 
density obey the following laws: 

e . ~ c ~ T ,  =BTr~;  p .  =(• p, =B~r~(~-~), (1.2) 

where B T, Bt~, and k are  assigned constants .  The choice of the exponent in the law of variat ion of p .  is 
dependent on the convective t e rm of the energy equation f rom sys tem (1.1) having the same order  with 
r e spec t  to r as the t e rm containing the the rmal  conduction. 

F rom (1.2) and (1.1) one can obtain an express ion for the charac te r i s t i c  kinematic viscosi ty :  

v .  = AB~,B~-ir  ~, 

after  which the charac te r i s t i c  Reynolds number is represented  in the form 

o,,, l l e = v , - - = e  "r , e=\~--~p] , 

where the value e, which is dimensional in general ,  is introduced for convenience of notation. 

Let  us t r ans fo rm the sys tem of equations (1.1) to dimensionless form,  using Eqs.  (1.2) and (1.3) for 
this. As seen f rom (1.3), the radial  coordinate r plays the role  of the charac te r i s t i c  length here,  while 
the scales  of the lengths and veloci t ies  in the axial direct ion must  be chosen in the same way as is done 
in boundary- layer  theory,  i .e.  

= r V,]~ z .  ]/-~-~ -~ = erhl2; 

fo r  
V z .  - -  V ~  - -  eo)rh/2. 

After  the t rans format ion  the equations have the form 
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2 2 
h--2 ~:h--2 r = 8 ~ ; z : 8r~120; Vr = ~orF; 

vo = orG; v. = eor~/2N; e = BTr~Q; 

p = (• - -  1) BTBor~nP; 9 = Bor~(~-gD; 

p =- B ocoe~r~Q% 

w h e r e  F ,  G, N, Q, P ,  and D a r e  func t ions  of the  two new a r g u m e n t s  ~ and 0.  
i n t r o d u c e  the  d i f f e r e n t i a l  o p e r a t o r  s y m b o l  

A* = k ff 0 k ~ 2  O 

(!.4) 

To s h o r t e n  the  no ta t ion  we 

and define y = BT ~-2. The substitution of Eq~ (1.4) into Eqs. (1.1) gives 

P = QD, ( k n - -  k + 2) DF + A *  (DF) + 0 (DN)/O0 = 0; (1.6) 

D (F 2 -  G ~ + F .  A * F  -~- NOF/O0) = - -  (• - -  1) V8-2~ ~ (knP + 

2 ~ (kn + A*)[Q~(F -~- 2 .  A * F  - -  ON/O~)] + + A,P) + -~- 

a r Io• , ~2 )]+2~2Q ~ A*F.; 
+ o-vLO t T . A* v 

( o( 
D 2 F G + F .  A * G + : ~ g - ~ ) = - g ~  O,~.o_~_jw_oa~, ~2(kn+~ A*)  (Q~. A*G)-+-2~2Q ~ . A * G ;  

D (F �9 A*N + NOX/O~}) = - -  (• t) 78-20P!0~ + 

~ !  a {~a~v A * F ) ] + ( k n  k , , 3 ~ - [ Q  ~ z ~ - 2 F -  - - T T 2 + A * )  [ ~ / ~  ~-~ 
L + " A*N)]; 

D [F (k + A*) Q § NOQ/Off] -j- (• - -  i)  P (2F + A *F + ON/O~}) -~ 

O (Q oQ) 
-- ~• ~ . { ( k n _ ? k + A . ) [ Q n ( k + A , ) Q l } + _ _ ~ a  - -  , ~ _  + 

+ ?-%~Q~ {2 [(F + A'F)-" + F 2 + (ON~00) 21 + ~-2 (OG/O@) ~ ~- 

~-~ \0~ + -A*_V] n - ( A * G ) 2 - - 2 [ ( Z ~ - A * ) F + & u  

By c o m p a r i n g  E q s .  (1.3) and (1.4) one can  s e e  tha t  ~ = Re - i / 2 .  If  one a s s u m e s  tha t  the  c ond i t i ons  of 
the  g iven  p r o b l e m  a l low one to  e x t e n d  to  i t  the  p r i n c i p l e s  which  a r e  fu l f i l l ed  in  e x t e r n a l  s t r e a m l i n e  f low 
then  the l i m i t i n g  t r a n s i t i o n  ~ - -  0 shou ld  l e a d  to  the  c o n v e r s i o n  of E q s .  (1.6) in to  the equa t i ons  of the  b o u n d -  
a r y  l a y e r  a t  the  s u r f a c e  of the  r o t a t i n g  d i s k .  H o w e v e r ,  such  a l i m i t i n g  t r a n s i t i o n  does  not  o c c u r  p a i n l e s s l y  
fo r  a l l  the  e q u a t i o n s  of s y s t e m  (1o6)o T u r n i n g  to the  l a s t  equa t ion  of th i s  s y s t e m  (the e n e r g y  equa t ion) ,  one 
can  s e e  t ha t  f o r m a l l y  the  m a i n  t e r m  of th i s  equa t ion  as  } - -  0 m u s t  be  c o n s i d e r e d  as  a d i s s i p a t i v e  t e r m  
c o n t a i n i n g  the f a c t o r  ~ - 2  But  the  a s s u m p t i o n  tha t  the r o l e  of d i s s i p a t i o n  i s  p r e d o m i n a n t  canno t  have  a 
p h y s i c a l  b a s i s ,  wh i l e  f r o m  the p o i n t  of  v i ew of the m a t h e m a t i c s  one would  have  to d i s c a r d  a l l  t e r m s  c o n -  
t a i n ing  h i g h e r  d e r i v a t i v e s  in such  a c a s e ,  wh ich  would  l e a d  to the i m p o s s i b i l i t y  of so lv ing  the  b o u n d a r y  
p r o b l e m s .  The  c o n t r a d i c t i o n  which  thus  a r i s e s  can  only i n d i c a t e  one th ing:  in the  g e n e r a l  c a s e  of  the  
m o v e m e n t  of a v i s c o u s  and t h e r m a l l y  conduc t ing  g a s  u n d e r  the  e f f ec t  of  a r o t a t i n g  d i s k  of unbounded  d i -  
m e n s i o n s  i t  i s  i m p o s s i b l e  to ob ta in  a s i m p l i f i c a t i o n  of the  m a t h e m a t i c  d e s c r i p t i o n  of the p r o b l e m  t h r o u g h  a 
t r a n s i t i o n  to b o u n d a r y - l a y e r  e q u a t i o n s ,  and  no m a t t e r  wha t  the  mode  of mo t ion ,  one can  a lways  f ind  in  the  
s t r e a m  a r e g i o n  fo r  the  s t u d y  of which  one m u s t  u s e  the  c o m p l e t e  N a v i e r - S t o k e s  e q u a t i o n s .  

The  above  d i s c u s s i o n  i s  v a l i d  bo th  fo r  the c a s e  of a c o n s t a n t  t e m p e r a t u r e  of the d i s k  s u r f a c e  ( k = 0) 
and fo r  any  p o w e r  law c o r r e s p o n d i n g  to  E q s .  (1.2) wi th  k ~ 2. The  c a s e  of k = 2 i s  s p e c i a l  and  not  only  
l e a d s  to a n u m b e r  of s i m p l i f i c a t i o n s  bu t  a l s o  a l l ows  one to r e m o v e  the a b o v e - m e n t i o n e d  c o n t r a d i c t i o n .  
In fac t ,  i t  i s  s e e n  f r o m  (1.3) tha t  wi th  k = 2 the R e y n o l d s  n u m b e r  is  c o n v e r t e d  to a c o n s t a n t  Re  = e - 2  so  
tha t  ~ ~ e a l s o ,  and  the d i f f e r e n t i a l  o p e r a t o r  (1.5) d e g e n e r a t e s  in th is  e a s e  in to  the o r d i n a r y  o p e r a t o r  

(h*)k=z= - -  ~dld~, (1.7) 
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and, consequently, sys tem (1.6) becomes  a sys tem of ordinary  differential  equations. But the mos t  im-  
portant  p roper ty  of Eqs.  (1.6) with k = 2 consis ts  in the fact  that the t ransi t ion ~ - -  0 in this case gives 

- -  0 and ~/~ - -  1, as a r e su l t  of which the dissipative t e rm of the energy equation proves  to have the 
same o rde r  as the t e r m  containing the thermal  conduction, and no contradict ions a r i se  in the t ransi t ion 
f rom the N a v i e r - S t o k e s  equations to the boundary- l aye r  equations.  

2. Let  us examine in more  detail that  var iant  of the motion of a viscous gas above a rotating disk 
where the surface tempera ture  var ies  in the radial  direction according to a quadratic law, i.e., where 
Eqs.  (1.2) with the par t i cu la r  value k = 2 are  applicable. It mus t  be noted that the thermal  boundary layer  
at a disk in an incompress ib le  fluid has been studied in [10] for an a rb i t r a ry  law of radial  t empera ture  
variation,  while the special  case  of a quadratic law was analyzed in [11]. In studying the motion of a com-  
press ib le  gas Sychev [i2] indicated the possibi l i ty of decreas ing the number  of arguments  in the problem 
of the nonsteady motion under the effect  of a ro ta t ing conical surface with a l inear law of the t empera tu re  
dependence of the v i scos i ty  and with a quadratic law of the radial  t empera ture  distribution. Thus, in the 
case  of n = 1 this derivation also extends to the problem being considered here,  which conf i rms the pos-  
sibility of obtaining a s e l f - s imi l a r  solution, mentioned in Sec. 1. 

Without imposing any res t r i c t ions  on the value of n we can use the general  dimensionless  equation 
(1.6), where one must  only set  k = 2 and ~ = r and take the opera tor  A* as expressed  in accordance with 
(1.7). The limiting t ransi t ion e -  0 allows one to obtain the equations for  the boundary layer  at a disk 
rotat ing in a gas (differentiation with respec t  to ~ is denoted by a pr ime) :  

2nDF--6 . (DF) '  + (DN)' = 0; P ~ QD; 

D (NF' -- ff, FF'  + F ~ - -  G ~) = --  (z --  t) ?2r~P ~- (Q"F'); 

O (NG' - -  ff, FG' + 2FG) = (Q~G')', P' ~ O; 

D ( N Q ' - - f f F Q '  + 2FQ) + (•  I) P ( 2 F - - O F '  Q-N') = - ~  (Q~Q')' + -~-Q 

(2.1) 

Before we formulate  the boundary conditions, we should note that one cannot obtain a solution for 
Eqs.  (2.1) with the conditions p(,o) = Q(oo) = 0 since the condition of constancy of the function P ac ross  the 
layer  leads to the t r iv ia l  and physical ly meaningless express ions  P -= 0 and Q - 0. But if P = P(oo) # 0 
then at an infinite distance f rom the disk the function C(~) should approach some constant  limit,  i .e.,  ro ta -  
tional motion of the gas with a cer ta in  constant  angular veloci ty must  exist  far  f rom the surface.  

Taking these r e m a r k s  into account, the boundary conditions for the solution of the problem of the 
boundary layer  at the disk can be represen ted  in the fo rm 

G(0) = i ;  F(0)=N(0)=0; (2.2) 

Q(~)=t; p(~)=l; F(~)=0; 

G(oo)=V 2~(• u. 

With such an ass ignment  of the boundary conditions the value Q(0) = Qw, which charac te r i zed  the t empera -  
ture distribution over  the surface of the disk, will be found in the course  of the solution. 

The form of Eqs.  (2.1) can be simplified in the case of n = 1 if in place of ~ we introduce the new a r -  
gument 

@ 

~=.t" Ddff 
0 

and define 

As a result, we obtain 

W = D ( N  - -  OF). 

3 F + W ' = 0 ;  QD=I;  

WF'  + F ~_ G~= __ QU2 + F"; 

WG'+2FG=G";  

xWQ'  -{- 2FQ = • Q" 2 ( •  i) ( F "  + G' '). 

(2.3) 
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The boundary  condi t ions (2.2) r e m a i n  in the p rev ious  form,  only se t t ing  n = 1 and r ep l ac ing  N by W in them.  

The s y s t e m  of equat ions (2.3) is  v e r y  s i m i l a r  to the equations de s c r i b i ng  the mot ion  of an i n c o m p r e s -  
s ib le  f luid under  the ef fec t  of a ro ta t ing  d isk  [2]. The main  d is t inc t ion  of s y s t e m  (2.3) cons i s t s  in the fact  
that  the ene rgy  equation cannot be s e p a r a t e d  f rom the equations of motion and the continuity equation,  i . e . ,  
the t h e r m a l  boundary  l a y e r  cannot be ana lyzed  independent ly  f rom the dynamic  boundary  l a y e r ,  which is  
to be expec ted  in a study of motion and heat  t r a n s f e r  in a c o m p r e s s i b l e  gas .  

Le t  us s tudy the a sympto t i c  behav io r  of the solut ion of Eqs .  (2.3) as ~ ~ ~ .  We wil l  a s sume  that  
W(~) = - c ,  a s suming  the reby  that,  as in the case  of an i n c o m p r e s s i b l e  fluid, inflow of f luid toward  the disk 
occu r s  fa r  f rom the su r face ,  compensa t ing  for  the c a r r y i n g  away of m a s s  in the r a d i a l  d i r ec t ion  owing to 
the ef fec t  of the cen t r i fuga l  f o r ce s  of i n e r t i a .  The asympto t i c  equat ions for  the p r inc ipa l  v a r i a b l e s  can be 
wr i t t en  in the fo rm 

F - ~ C l e - ~ ; ;  G = U + C 2 e - V g ;  

3 ,C3e ~. W = - - c + T C l e - ~ ;  Q = t - ~ -  
(2,4) 

Subst i tut ion of (2.4) into Eqs .  (2.3) leads  to a lgebra i c  equations for  the coeff ic ients  C i which al low one to 
obtain a non t r iv ia l  solut ion only for  a d e c r e m e n t  in the at tenuat ion b sa t i s fy ing  the equation 

(2.5) 

The solut ion of Eq. (2.5) cannot be r e p r e s e n t e d  in ana ly t i ca l  fo rm for  a r b i t r a r y  ~'~, ~, and U. It  is  
obvious that  the case  of a = 1 and u > 0.5 is  spec ia l ,  s ince in this  case  Eq. (2.5) does not have r e a l  r oo t s .  
One can show that  one of the two ex is t ing  p a i r s  of complex-con juga te  roo t s  n e c e s s a r i l y  has a pos i t ive  r e a l  
p a r t  and, consequent ly ,  that  the s y s t e m  (2 5)  under  study has a solut ion which dies  out at  infinity,  but the 
nature  of the dying out p roves  to be o s c i l l a t o r y  in this  c a s e .  

We can show that  in the gene ra l  ease  of an a r b i t r a r y  P r a nd t l  number  Eq. (2.5) with any r e a l  and non- 
ze ro  va lues  of U and c has at  l e a s t  one pos i t ive  roo t .  F o r  this  we int roduce 

S=(b - -  c)/(b - -  ac) 

and r e p l a c e  the unknown b with s in Eq. (2.5). We obtain 

q) (s)=O; 

~9 =(~s--l)2s~--B2(s- i )4(s-  2• 
E~ - 27. U 2 

(i - o)~ c 2 " 

(2.6) 

It is  n e c e s s a r y  to find a r e a l  roo t  of Eq. (2.6) sa t i s fy ing  the condit ion s > 2ua  -1, s ince  when this  condit ion 
is not s a t i s f i ed  the s ame  s i tua t ion  a r i s e s  as when a = 1. The re  mus t  n e c e s s a r i l y  be such a root  for  an 
equation of the type of (2.6), which with the ind ica ted  l imi ta t ion  has two i n t r i n s i c a l l y  pos i t i ve  t e r m s ,  the 
second of which has the m u l t i p l i e r - 1 ,  is  r educed  to ze ro  at the s t a r t i ng  point  of the i n t e rva l  under  con-  
s ide ra t ion ,  but  i n c r e a s e s  in absolute  value  f a s t e r  than the f i r s t  t e r m  because  i t  contains  a h igher  power 
of s.  In finding the roo t  s 1 one can a lso  find the co r r e spond ing  d e c r e m e n t  b 1, which is  uniquely connected 
with s 1: 
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bx=c(zsl_ t )/ (s l_ t ). (2.7) 

For  ordinary  gases  ~ > 1/2 and a < 1, but it then follows f rom Eq. (2.7) that 0 < b 1 < c. Assuming 
that the function W(~) decreases  monotonically as ~ increases ,  one must  take the coefficient C 1 in Eqs.  
(2.4) as posit ive.  On the other hand, the substitution of Eqs.  (2.4) into Eqs.  (2.3) allows one to obtain, in 
par t icu lar ,  

C2=2UC1/(b 2 --  bc). (2.8) 

The sign of the coefficient C 2 i tself  determines  the sign of the derivat ive dG/d~ far  f rom the sur face .  It 
is natural to asstime that the c i r cu la r  veloci ty of the gas falls off monotonically with g rea te r  distance 
f rom the surface,  and then C 2 > 0. But because  of the l imitations C 1 > 0, b > 0, and b < c Eq. (2.8) gives 
a positive value of C 2 only if U < 0. This nonrigorous argument  leads to the unexpected resu l t  that the 
rotat ional  motion of the gas far  f rom the surface of the disk can occur  in the direct ion opposite to the ro -  
tation of the disk i tself .  

The qualitative study of the proper t ies  of the motion of a viscous gas above a rotating disk which 
was ca r r i ed  through above per ta ined only to the limiting mode (e ~ 0) of the boundary layer .  If we wish 
to consider  the motion for a rb i t r a ry  ~ < 1 we must  turn back to Eqs.  (1.6) and use the method of joinable 
asymptotic  expansions [9] mentioned ea r l i e r .  With k = 2 and ~ =- e and with allowance for  (1.7) Eqs.  (1.6) 
se rve  as the bas is  for  the construct ion of inner expansions, whereas  before the construct ion of outer  ex- 
pansions one must  make the substitutions 

~=~ole; N=No/s  

and operate with the var iables  ~0 and N O in the outer region.  

The solution of the boundary problem for Eqs.  (2.1) with the conditions (2.2) should be considered as 
the initial approximation for the inner region.  The initial approximation for the outer region will be ro ta -  
tion of the mass  of gas as a solid body with a constant angular velocity ~ = wU, with the p r e s s u r e  and den- 
sity corresponding to Eqs.  (1.2) with'the same value k = 2. The construct ion of all subsequent approxima-  
tions, both inner and outer,  does not ra i se  any fundamental difficulties because of the absence of any obs- 
cur i t ies  of ei ther  a mathemat ical  or  a physical  nature~ The qualitative proper t ies  of the flow brought out 
within the f ramework  of boundary- layer  theory should not undergo significant changes when the higher 
approximations are  taken into account.  We only need to mention the necess i ty  of modifying the boundary 
conditions to allow for such effects as slippage, the creep velocity, and the t empera tu re  jump, which are 
proport ional  to e or e 2. A more  detailed study of the higher approximations in the solution of the problem 
of the motion of a gas above a r o t a t i ngd i sk  goes beyond the scope of the presen t  ar t ic le .  

3. As an example, numer ica l  calculations were made of the boundary layer  at a rotating disk for 
the case of n = 1, when one can use the s impler  equations (2.5) with the modified boundary conditions (2.2). 
The other parameteirs are  taken as follows: ~r = 1.4; a = 0.7; U 2 = 0.09108. The value of Qw and the sign 
of the value U = vo~/(wr)  were determined in the course  of the solution. 

The method of calculation does not differ in principle f rom that which was descr ibed in [13] and 
comes down to the numerica l  solution of the Gauchy problem with a rb i t r a r iness  in the initial values,  which 
joins at some point with the solution which is valid far  f rom the surface and is determined by severa l  
t e rms  of the asymptot ic  expansion; the unknown pa rame te r s  are  made more  exact by Newton' s method. 
The fact that the o rder  of sys tem (2.5) is higher than the o rde r  of the sys tem solved in [13] does not have 
essent ial  importance,  although it somewhat complicates  the algori thm of the solution. 

Prof i les  of the var ia t ion in the dimensionless  values charac te r iz ing  the three veloci ty  components 
and the tempera ture  of the gas in the boundary layer  which were obtained as a resul t  of the calculations 
are  shown in Figs.  1 and 2. The graphs confi rm the co r rec tness  of the conclusions drawn ea r l i e r  in the 
qualitative study. In par t icular ,  with the value of the modulus U chosen here  it proved possible to cons t ruc t  
a continuous solution only for U < 0, i.e., for the case of rotat ional  motion of the mass  of gas far  f rom the 
disk in the direct ion opposite to the rotation of the disk i tself .  

In the case of n = 1 under considerat ion the gas  density at the outer limit of the boundary layer  is 
constant:  (Bp)n=l = P~. Calculating for  the pa r ame te r s  assigned above the mass  flow rate  of gas flowing 
in toward the disk in the axial direction, i.e., the radial  flow rate  of mass  c a r r i ed  f rom the center  toward 
the per iphery,  we have 
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co  eo 

0 0 

But on the s t rength  of the continuity equat ion we have 

S = - (1 /3 )  w l r  = 
0 

and f r o m  (3.1) we obtain 

Qm=t.O497~tr%~p~e.  

The f r ic t ional  s t r e s s  at  the su r face  of the disk is e x p r e s s e d  by the dependence 

-.~1~ = - -  A B ~ r h o e - i G  ' (0). 

The coeff ic ient  of the m om en t  of the f r ic t ional  fo rces  is r e p r e s e n t e d  in the f o r m  
r 

27~ S r2Twdr " 
0 4~ eG' (0) = 2.6777e. 

Cm-- ( 1 / 2 )  p ~ ( o ~ r  5 ~ - -  

The heat  flux f r o m  the su r face  of the disk to the gas which is analogous to this is equal to 

aT • 
qw = - - ( ~  " ~ ) w  --  ~ A B ~ r 3 s - i Q  ' (0). 

The Nusse l t  number  (the in tegra l  h e a t - t r a n s f e r  cha rac t e r i s t i c )  is r e p r e s e n t e d  by the express ion  
r 

r S 2nrqwdr 
o 2 Q' (0) 

N u =  ar 2[(LT)~ (~T): o = - - - -  ~ =0.01238 I 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

A compar i son  of Eqs .  (3.1)-(3.4) with the analogous exp res s ions  for  the case  of the rota t ion of a 
disk in an i ncompres s ib l e  fluid [2] indicates  that  the al lowance for  compres s ib i l i t y  does not a l t e r  the s t r u c -  
ture  of the r ep r e s en t a t i on  of the in tegra l  c h a r a c t e r i s t i c s  of the motion and heat  t r a n s f e r .  

LITERATURE CITED 

1. T. Kgrmgn, "Laminare and Turbulente Reibung," Z. Angew, Math. Mech., I, 235 (1921) ~ 
2. L.G. Loitsyanskii, The Laminar Boundary Layer [in Russian], Fizmatgiz, Moscow (1962). 
3. L.A. Dorfman, Hydrodynamic Resistance and Heat Transfer of Rotating Bodies [in Russian], Fiz- 

matgiz, Moscow (1960). 
4. K. Millsaps and K. Pohlhausen, "Heat transfer by laminar flow from a rotating plate," J. Aeronaut. 

Sci., 19, No. 2, 120 (1952). 
5. V . V .  Sychev, "On the motion of a v iscous  e Iec t r i ca l ly  conducting liquid under  the ef fec t  of a ro ta t ing  

disk in the p r e s e n c e  of a magnet ic  field," P r ik l .  Mat.  Mekh., 24, No. 5, 906 (1960). 
6. V . P .  Shidiovskii ,  "Study of the motion of a v i scous  e l ec t r i ca l ly  conducting liquid produced by the 

ro ta t ion  of a disk in the p r e s e n c e  of an axial  magnet ic  field" Magnitn. Gidrodinam, No. 1, 93 (1966). 
7. V . P .  Shidlovskii ,  "The l amina r  boundary l ayer  at an unbounded disk ro ta t ing  in a gas,"  P r ik l .  Mat.  

Mekh.,  24, No. 1, 161 (1960). 
8. S. Os t r ach  and J~ D. Thornton,  " C o m p r e s s i b l e  l amina r  flow and heat  t r a n s f e r  about a ro ta t ing  i so th e r -  

ma l  disk," NASA Tech .  Note, No. 4320 (1958). 
9. M . D .  Van Dyke, Pe r tu rba t ion  Methods in Fluid Mechanics ,  Academic  P r e s s ,  New York  (1964). 

10. D . R .  Davies,  "Heat  t r a n s f e r  by l amina r  flow f r o m  a rotat ing disk at l a rge  Prand t l .  numbers , "  Quar t .  
J .  Mech. Applo Math.,  12, No. 1, 14 (1959). 

11. L . A .  Dorfman,  "Hea t  t r a n s f e r  of a rota t ing disk," Inzh . -F iz .  Zh., No. 1, 3 (1958). 
12. V . V .  Syehev, "Hyperson ic  flows of a v iscous  the rma l ly  conducting gas,"  Pr ikl~ M a t .  Mekh., 25, No. 

4, 600 (1961)o 
13. W . G .  Cochran,  "The  flow due to a ro ta t ing  disc," P r o c .  Cambr idge  Phil .  Soc., 30, No. 3, 365 (1934). 

393 


