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INTRODUCTION

The problem of the steady laminar motion of an incompressible viscous fluid under the effect of an
unbounded disk rotating with constant angular velocity was first formulated and solved approximately by
Karman [1j. The solution of this problem, constructed for the Navier—Stokes equations, at the same time
displays a number of features characteristic of flows in boundary layers. It is not hard to establish, for
example, that Karman's solution corresponds to a finite displacement thickness which does not depend on
the radial coordinate, and one can introduce other thicknesses defined ia boundary-layer theory. In this
connection many of the methods of boundary~layer theory are applied in the solution of the Karman problem
and its modifications [2-6].

Eventually, attempts were made to construct a solution analogous to Karman's solution for the more
general case of a compressible, viscous, and thermally conducting fluid {7, 81. In [7], in particular, the
flow of a gas under the effect of a rotating disk with a constant surface temperature was analyzed in the
boundary-layer approximation, However, the construction of higher approximations to the solution of the
total problem, determined by the method of joinable asymptotic expansions [9], is affected by the presence
of secular terms which are proportional to ever-higher powers of the radial coordinate, which indicates
divergence of the approximations. Thus, it becomes clear that in the case of 2 constant surface tempera-
ture the problem of an unbounded disk rotating in a gas does not have a solution in the boundary-layer ap-
proximation and requires the compiete Navier—Stokes equations for its description for any values of the
characteristic parameters,

In order to have the possibility of applying the perturbation method to the solution of the problem of
a disk in a compressible fluid one must modify the formulation of the problem, assuming that the surface
temperature varies with the radius. On the basis of the assumpticn that the radial temperature variation
obeys a power law, a transformation of the original system of Navier—Stokes equations to dimeunsionless
form, which is most suitable for the transition to boundary-layer equations, is performed below, It is
shown that such a transition is possible only for a quadratic law of radial temperature variation, when
there exists a self-similar solution of the complete Navier—Stokes equations. By introducing into the
analysis the small parameter ¢, which is analogous to Re~? /2 in problems of streamline flow, and passing
to the limit & — 0, we obtain the correct variant of the equations of the boundary layer in a gas at a rotating
disk. A study of these equations indicates the presence of some special features of such a boundary layer
which are not encountered in ordinary boundary layers. For example, it is ascertained that 2 solution of
the boundary-layer equations can exist if outside the boundary layer there is adiabatic motion of a certain
class with radially varying pressure and temperature and with a constant angular velocity of rotation of
the entire mass of gas. The properties of the attenuation of perturbations with greater distance from the
surface are also analyzed and the results of a numerical calculation of the flow parameters in the boundary
[ayer are presented for a certain concrete example,

1. Suppose a disk of infinitely large radius, rotating with a constant angular velocity w, is located
in the plane z = 0. The half-space above the disk is filled with a viscous thermally conducting gas which
has constant specific heat capacities cp and ¢y, a constant Prandtl number ¢, an equation of state in the
Clapeyron form, and a power-law dependence of the viscosity on the temperature. Under the effect of the
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rotation of the disk the gas is set into motion and, taking this motion as established and axisymmetric, we
use for its description the Navier—Stokes equations, which in the cylindrical coordinate system have the

form
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where %= ¢, /¢y, e = ¢,T is the internal energy, A and n are constant parameters, and the remaining nota-

tion coincidgs with that in standard use,
In order to make it possible to consider a certain class of problems with different boundary condi-
(1.2)

tions, we assume that at the characteristic surface which we have chosen the temperature, pressure, and

density obey the following laws:
e*ZC‘UT* =BT7'h§ Px =(’K,—1 )BTBprk’ﬂ; Ou =Bprh(n——1)’

where By, B , and k are assigned constants. The choice of the exponent in the law of variation of p , is
dependent on the convective term of the energy equation from system (1.1) having the same order with

respect to r as the term containing the thermal conduetion,
From (1.2) and (1.1) one can obtain an expression for the characteristic kinematic viscosity:

v, = AB}B; ',

after which the characteristic Reynolds number is represented in the form
Re =T et g = (AB%>U2 3)
Vi ’ “\wB, 4
p

where the value &, which is dimensional in general, is introduced for convenience of notation,

Let us transform the system of equations (1.1) to dimensionless form, using Eqs, (1.2) and (1.3) for
this, As seen from (1.3), the radial coordinate r plays the role of the characteristic length here, while
the scales of the lengths and velocities in the axial direction must be chosen in the same way as is done

in boundary-layer theory, i.e.
S VA Ry
% = Vhe o T
(07
Uy = _V_I;_é_ = gwrk/2

After the transformation the equations have the form
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vg = 0rG;, v, =eort2N; ¢ = Br*Q;

p=(x—1BrBy*"P; p= Bprk("—”D;

— 2.k
B = ByaeirtnQn,

where F, G, N, Q, P, and D are functions of the two new arguments { and 4. To shorten the notation we
introduce the differential operator symbol

At Lg 0 k2e 0 (1.5)

and define vy = BTw'z. The substitution of Eq. (1.4) into Eqgs. (1.1) gives

p-QD, (kn—Fk+2)DF - A*(DF)-+0(DNY68 =0; (1.6)
D(F*—G* + F . A¥F + NOF|99) = — ( — 1) ye ™% (knP +
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By comparing Egs. (1.3) and (1.4) one can see that £ = Re™! /%, If one assumes that the conditions of
the given problem allow one to extend to it the principles which are fulfilled in external streamline flow
then the limiting transition ¢-— 0 should lead to the conversion of Egs. (1.6) into the equations of the bound-
ary layer at the surface of the rotating disk. However, such a limiting transition does not occur painlessly
for all the equations of system (1.6). Turning to the last equation of this system (the energy equation}, one
can see that formally the main term of this equation as £~ 0 must be considered as a dissipative term
containing the factor g"z. But the assumption that the role of dissipation is predominant cannot have a
physical basis, while from the point of view of the mathematics one would have to discard all terms con-
taining higher derivatives in such a case, which would lead to the impossibility of solving the boundary
problems, The contradiction which thus arises can only indicate one thing: in the general case of the
movement of a viscous and thermally conducting gas under the effect of a rotating disk of unbounded di-
mensions it is impossible to obtain a simplification of the mathematic description of the problem through a
transition to boundary-layer equations, and no matter what the mode of motion, one can always find in the
stream a region for the study of which one must use the complete Navier—Stokes equations.

The above discussion is valid both for the case of a constant temperature of the disk surface ( k = 0)
and for any power law corresponding to Eqs. (1.2) with k =2, The case of k = 2 is special and not only
leads to a number of simplifications but also allows one to remove the above~-mentioned contradiction,

In fact, it is seen from (1.3) that with k = 2 the Reynolds number is converted to a constant Re = &2, so
that ¢ = ¢ also, and the differential operator (1.5) degenerates in this case into the ordinary operator

(A*),—,= — 0d/d8, (1.7
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and, consequently, system (1.8) becomes a system of ordinary differential equations, But the most im-
portant property of Egs. (1.6) with k = 2 consists in the fact that the transition £ — 0 in this case gives
e 0 and £/¢£ — 1, as a result of which the dissipative term of the energy equation proves to have the
same order as the term containing the thermal conduction, and no contradictions arise in the transition
from the Navier—Stokes equations to the boundary-layer equations.

2. Let us examine in more detail that variant of the motion of a viscous gas above a rotating disk
where the surface temperature varies in the radial direction according to a quadratic law, i.e., where
Eqgs, (1.2) with the particular value k = 2 are applicable, It mustbe noted that the thermal boundary layer
at a disk in an incompressible fluid has been studied in [10} for an arbitrary law of radial temperature
variation, while the special case of a quadratic law was analyzed in [11]. In studying the motion of a com-
pressible gas Sychev [12] indicated the possibility of decreasing the number of arguments in the problem
of the nonsteady motion under the effect of a rotating conical surface with a linear law of the temperature
dependence of the viscosity and with a quadratic law of the radial temperature distribution, Thus, in the
case of n = 1 this derivation also extends tc the problem being considered here, which confirms the pos-
sibility of obtaining a self-similar solution, mentioned in Sec, 1.

Without imposing any restrictions on the value of n we can use the general dimensionless equation
(1.6), where one must only set k = 2 and £ = £ and take the operator A* as expressed in accordance with
(1.7). The limiting transition ¢ — 0 allows one to obtain the equations for the boundary layer at a disk
rotating in a gas (differentiation with respect to ¢ is denoted by a prime):

2nDF — 9 (DF) + (DNY =0; P =QD; (2.1)

D(NF' — OFF + F? — G2 = — (x— 1) y2nP = (Q"F"Y;

D(NG' — 8FG' + 2FG) = (Q°G'Y, P'=0;

D(NQ —BFQ' + 2FQ) + (n— 1) P(2F — 6F + N') =—(QQ'Y + %Q“ (F167).

Before we formulate the boundary conditions, we should note that one cannot obtain a solution for
Eqgs, (2.1) with the conditions P(») = Q(«) = 0 since the condition of constancy of the function P across the
layer leads to the trivial and physically meaningless expressions P =0 and Q =0, Butif P = P(x) =0
then at an infinite distance from the disk the function G(J) should approach some constant limit, i.e., rota-
tional motion of the gas with a certain constant angular velocity must exist far from the surface.

Taking these remarks into account, the boundary conditions for the solution of the problem of the
boundary layer at the disk can be represented in the form

G(0)=1; F(0)=N(0)=0; .2)
Q(oo)=1; P(co)=1; F(e0)=0;
G(co)=V 2n(x—T)y=U.

With such an assignment of the boundary conditions the value Q(0) = Q,, which characterized the tempera-
ture distribution over the surface of the disk, will be found in the course of the solution,

The form of Egs, (2.1) can be simplified in the case of n = 1 if in place of ¢ we introduce the new ar-
gument

¢
= S Ddo
0
and define
W=D(N — 8F).

As a result, we obtain

SFLW' =0; QD=1;
. 2.3)
WF' +F— (= — QU F'";
W& +2FG=G";
WWQ +2FQ =2 @7 - &= (7 7).
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The boundary conditions (2.2) remain in the previous form, only setting n =1 and replacing N by W in them,

The system of equations (2,3) is very similar to the equations describing the motion of an incompres-
sible fluid under the effect of a rotating disk [2]. The main distinction of system (2.3) consists in the fact
that the energy equation cannot be separated from the equations of motion and the continuity equation, i.e.,
the thermal boundary layer cannot be analyzed independently from the dynamic boundary layer, which is
to be expected in a study of motion and heat transfer in a compressible gas.

Let us study the asymptotic behavior of the solution of Egs. (2.3) as £ — =, We will assume that
W(w») =—e¢, assuming thereby that, as in the case of an incompressible fluid, inflow of fluid toward the disk
occurs far from the surface, compensating for the carrying away of mass in the radial direction owing to
the effect of the centrifugal forces of inertia, The asymptotic equations for the principal variables can be
written in the form

— — b5 4 —bT.
F=Cpe;, G=0U-+Cpi% ©.4)

W= —c¢ - —%— Ce™™ Q=1+ Cpe5

Substitution of (2.4) into Egs. (2.3) leads to algebraic equations for the coefficients G which allow one to
obtain a nontrivial solution only for a decrement in the attenuation b satisfying the equation

(2.5)

(b2 — be) = U® (2—" boc —4).

® b— 0Oc

The solution of Eq. (2.5) cannot be represented in analytical form for arbitrary», ¢, and U. Itis
obvious that the case of ¢ =1 and % > 0.5 is special, since in this case Eq. (2.5) does not have real roots,
One can show that one of the two existing pairs of complex~conjugate roots necessarily has a positive real
part and, consequently, that the system (2.3) under study has a solution which dies out at infinity, but the
nature of the dying out proves to be oscillatory in this case,

We can show that in the general case of an arbitrary Prandt! number Eg. (2.5) with any real and non-
zero values of U and ¢ has at least one positive root. For this we introduce

S=(b— &)/{b — oc)

and replace the unknown b with s in Eq, (2.5). We obtain

@ (s)=0;
D =(0s —1)%*—B(s — 1)¥s — 2207); (2.6)
5 I% Uz

o (l—oF

It is necessary to find a real root of Eq. (2.6) satisfying the condition s > 2%0‘1, since when this condition
is not satisfied the same sitnation arises as when ¢ = 1. There must necessarily be such a root for an
equation of the type of (2.6), which with the indicated limitation has two intrinsically positive terms, the
second of which has the multiplier—1, is reduced to zero at the starting point of the interval under con-
sideration, but increases in absolute value faster than the first term because it contains a higher power
of s. In finding the root s; one can also find the corresponding decrement by, which is uniquely connected
with s,
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by=c(os;—1)/(s,—1). (2.7)

For ordinary gases ® >1/2 and o < 1, but it then follows from Eq. (2.7) that 0 <b; < c. Assuming
that the function W(¢) decreases monotonically as ¢ increases, one must take the coefficient C, in Egs.
(2.4) as positive. On the other hand, the substitution of Eqgs, (2.4) into Egs, (2.3) allows one to obtain, in
particular,

C,=2UCKb* — be). (2.8)

The sign of the coefficient C, itself determines the sign of the derivative dG/d{ far from the surface, It
is natural to asstume that the circular velocity of the gas falls off monotonically with greater distance
from the surface, and then C, > 0, But because of the limitations C; >0, b > 0, and b < ¢ Eq, (2.8) gives
a positive value of C, only if U < 0. . This nonrigorous argument leads to the unexpected result that the
rotational motion of the gas far from the surface of the disk can occur in the direction opposite to the ro-
tation of the disk itself, ’

The qualitative study of the properties of the motion of a viscous gas above a rotating disk which
was carried through above pertained only to the limiting mode (¢ — 0) of the boundary layer, If we wish
to consider the motion for arbitrary € < 1 we must turn back to Egs. (1.6) and use the method of joinable
asymptotic expansions [9] mentioned earlier, With k = 2 and ¢ = & and with allowance for (1.7) Egs. (1.6)
serve as the basis for the construction of inner expansions, whereas before the construction of outer ex-
pansions one must make the substitutions

0=0,/e; N=Nye
and operate with the variables #; and N in the outer region.

The solution of the boundary problem for Egs. (2.1) with the conditions (2,2) should be considered as
the initial approximation for the inner region, The initial approximation for the outer region will be rota-
tion of the mass of gas as a solid body with a constant angular velocity @ = wU, with the pressure and den-
sity corresponding to Egs. (1.2) with 'the same value k = 2, The construction of all subsequent approxima-
tions, both inner and outer, does not raise any fundamental difficulties because of the absence of any obs-
curities of either a mathematical or a physical nature. The qualitative properties of the flow brought out
within the framework of boundary-layer theory should not undergo significant changes when the higher
approximations are taken into account. We only need to mention the necessity of modifying the boundary
conditions to allow for such effects as slippage, the creep velocity, and the temperature jump, which are
proportional to € or €2, A more detailed study of the higher approximations in the solution of the problem
of the motion of a gas above a rotating disk goes beyond the scope of the present article.

3. As an example, numerical calculations were made of the boundary layer at a rotating disk for
the case of n = 1, when one can use the simpler equations (2.5) with the modified boundary conditions (2.2).
The other parameters are taken as follows: % =1.4;0 = 0.7; U2 = 0,09108. The value of Q,, and the sign
of the value U = vgoo /(wr) were determined in the course of the solution.

The method of calculation does not differ in principle from that which was described in [13] and
comes down to the numerical solution of the Gauchy problem with arbitrariness in the initial values, which
joins at some point with the solution which is valid far from the surface and is determined by several
terms of the asymptotic expansion; the unknown parameters are made more exact by Newton's method.
The fact that the order of system (2.5) is higher than the order of the system solved in [13] does not have
essential importance, although it somewhat complicates the algorithm of the solution,

Profiles of the variation in the dimensionless values characterizing the three velocity components
and the temperature of the gas in the boundary layer which were obtained as a result of the calculations
are shown in Figs. 1 and 2, The graphs confirm the correctness of the conclusions drawn earlier in the
qualitative study. In particular, with the value of the modulus U chosen here it proved possible to construct
a continuous solution only for U < 0, i.e., for the case of rotational motion of the mass of gas far from the
disk in the direction opposite to the rotation of the disk itself,

In the case of n = 1 under consideration the gas density at the outer limit of the boundary layer is
constant: (Bp)n::i = p,,. Calculating for the parameters assigned above the mass flow rate of gas flowing
in toward the disk in the axial direction, i.e., the radial flow rate of mass carried from the center foward
the periphery, we have
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O = 2:tr§ ov,dz = 25773 et \ Fat. (8.1)
[t} 0
But on the strength of the continuity equation we have
(Pt = — 3y Wi = o3
0

and from (3,1) we obtain
Q,,=1.0497 3 wp.e. (3.2)

The frictional stress at the surface of the disk is expressed by the dependence

609 _' 2 et Yall
= _(p _a.;)w — . AByos 6 (0).

The coefficient of the moment of the frictional forces is represented in the form
2nj' rir, dr .
]

e 00y =2.67 (3.3)
Co= e = — 5 £6' (0) = 2.6777e.

The heat flux from the surface of the disk to the gas which is analogous to this is equal to
_ aT . 3 9 4
Guw = ‘—‘<}\4 E)w = —'—E-ABTTSE Ql (0)

The Nusselt number (the integral heat-transfer characteristic) is represented by the expression

r g 2drg, dr 5 0'(0) (3.4)

Wi {(AT), — (M) 52 Q3 —17

Nu — 0.01238 —i—

A comparison of Eqs. (3.1)-(3.4) with the analogous expressions for the case of the rotation of a
disk in an incompressible fluid [2] indicates that the allowance for compressibility does not alter the struc-
ture of the representation of the integral characteristics of the motion and heat transfer,
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